Continuous Variable Quantum Key Distribution with a Noisy Laser
نویسندگان
چکیده
Existing experimental implementations of continuous-variable quantum key distribution require shot-noise limited operation, achieved with shot-noise limited lasers. However, loosening this requirement on the laser source would allow for cheaper, potentially integrated systems. Here, we implement a theoretically proposed prepare-and-measure continuous-variable protocol and experimentally demonstrate the robustness of it against preparation noise stemming for instance from technical laser noise. Provided that direct reconciliation techniques are used in the post-processing we show that for small distances large amounts of preparation noise can be tolerated in contrast to reverse reconciliation where the key rate quickly drops to zero. Our experiment thereby demonstrates that quantum key distribution with non-shot-noise limited laser diodes might be feasible.
منابع مشابه
Continuous-variable quantum key distribution protocols over noisy channels.
A continuous-variable quantum key distribution protocol based on squeezed states and heterodyne detection is introduced and shown to attain higher secret key rates over a noisy line than any other one-way Gaussian protocol. This increased resistance to channel noise can be understood as resulting from purposely adding noise to the signal that is converted into the secret key. This notion of noi...
متن کاملCorrection: Jacobsen, C.S., et al. Continuous Variable Quantum Key Distribution with a Noisy Laser. Entropy 2015, 17, 4654-4663
This errata contains the mentioned plots where the revised expressions have been applied, such that the replacement for Figure 2 in [1] is shown in Figure 1, and Figure 4 in [1] is shown in Figure 2. We keep the corresponding (b) panels for comparison. We note that the corrections only reinforce the conclusions of our paper, which are that reverse reconciliation is vulnerable to preparation noi...
متن کاملSide-Information Coding with Turbo Codes and its Application to Quantum Key Distribution
Turbo coding is a powerful class of forward error correcting codes, which can achieve performances close to the Shannon limit. The turbo principle can be applied to the problem of side-information source coding, and we investigate here its application to the reconciliation problem occuring in a continuous-variable quantum key distribution protocol.
متن کاملGaussian Quadrature Inference for Multicarrier Continuous-Variable Quantum Key Distribution
We propose the Gaussian quadrature inference (GQI) method for multicarrier continuousvariable quantum key distribution (CVQKD). A multicarrier CVQKD protocol utilizes Gaussian subcarrier quantum continuous variables (CV) for information transmission. The GQI framework provides a minimal error estimate of the quadratures of the CV quantum states from the discrete, measured noisy subcarrier varia...
متن کاملPerformance Improvement of Plug-and-Play Dual-Phase-Modulated Quantum Key Distribution by Using a Noiseless Amplifier
We show that the successful use of a noiseless linear amplifier (NLA) can help increase the maximum transmission distance and tolerate more excess noise of the plug-and-play dual-phase-modulated continuous-variable quantum key distribution. In particular, an equivalent entanglement-based scheme model is proposed to analyze the security, and the secure bound is derived with the presence of a Gau...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 17 شماره
صفحات -
تاریخ انتشار 2015